Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 136(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601791

RESUMEN

Eisosomes are large hemitubular structures that underlie the invaginated microdomains in the plasma membrane of various ascomycetous fungi, lichens and unicellular algae. In fungi, they are organized by BAR-domain containing proteins of the Pil1 family. Two such proteins, Pil1 and Lsp1, participate in eisosome formation in the yeast Saccharomyces cerevisiae. Under normal laboratory conditions, deletion of the PIL1 gene results in the inability of cells to assemble wild-type-like eisosomes. We found that under certain stress conditions, Lsp1 partially substitutes for the Pil1 function and mediates assembly of eisosomes, specifically following a decrease in the activity of serine palmitoyltransferase, for example, in response to hyperosmotic stress. Besides Lsp1, the assembly of eisosomes lacking Pil1 also requires Seg1 and Nce102 proteins. Using next-generation sequencing, we found that the seg1Δnce102Δpil1Δ strain, which is unable to form eisosomes, overexpresses genes coding for proteins of oxidative phosphorylation and tricarboxylic acid cycle. By contrast, genes involved in DNA repair, ribosome biogenesis and cell cycle are downregulated. Our results identify Lsp1 as a stress-responsive eisosome organizer and indicate several novel functional connections between the eisosome and essential cellular processes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Microbiol Spectr ; 10(6): e0248922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36377885

RESUMEN

The absence of Isc1, the yeast homologue of mammalian neutral sphingomyelinase type 2, leads to severe mitochondrial dysfunction. We show that the deletion of another type C phospholipase, the phosphatidylglycerol (PG)-specific phospholipase Pgc1, rescues this defect. Phosphatidylethanolamine (PE) levels and cytochrome c oxidase activity, which were reduced in isc1Δ cells, were restored to wild-type levels in the pgc1Δ isc1Δ mutant. The Pgc1 substrate PG inhibited the in vitro activities of Isc1 and the phosphatidylserine decarboxylase Psd1, an enzyme crucial for PE biosynthesis. We also identify a mechanism by which the balance between the current demand for PG and its consumption is controlled. We document that the product of PG hydrolysis, diacylglycerol, competes with the substrate of PG-phosphate synthase, Pgs1, and thereby inhibits the biosynthesis of excess PG. This feedback loop does not work in the absence of Pgc1, which catalyzes PG degradation. Finally, Pgc1 activity is partially inhibited by products of Isc1-mediated hydrolysis. The described functional interconnection of the two phospholipases contributes significantly to lipid homeostasis throughout the cellular architecture. IMPORTANCE In eukaryotic cells, mitochondria are constantly adapting to changes in the biological activity of the cell, i.e., changes in nutrient availability and environmental stresses. We propose a model in which this adaptation is mediated by lipids. Specifically, we show that mitochondrial phospholipids regulate the biosynthesis of cellular sphingolipids and vice versa. To do this, lipids move by free diffusion, which does not require energy and works under any condition. This model represents a simple way for the cell to coordinate mitochondrial structure and performance with the actual needs of overall cellular metabolism. Its simplicity makes it a universally applicable principle of cellular regulation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Fosfolipasas de Tipo C , Mitocondrias/metabolismo , Fosfatidilgliceroles/metabolismo , Fosfolipasas/química , Fosfolipasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfolipasas de Tipo C/metabolismo
3.
Microbiol Spectr ; 10(4): e0196122, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35758748

RESUMEN

Sphingolipids are essential building blocks of eukaryotic membranes and important signaling molecules that are regulated tightly in response to environmental and physiological inputs. While their biosynthetic pathway has been well-described, the mechanisms that facilitate the perception of sphingolipid levels at the plasma membrane remain to be uncovered. In Saccharomyces cerevisiae, the Nce102 protein has been proposed to function as a sphingolipid sensor as it changes its plasma membrane distribution in response to sphingolipid biosynthesis inhibition. We show that Nce102 redistributes specifically in regions of increased sphingolipid demand, e.g., membranes of nascent buds. Furthermore, we report that the production of Nce102 increases following sphingolipid biosynthesis inhibition and that Nce102 is internalized when excess sphingolipid precursors are supplied. This finding suggests that the total amount of Nce102 in the plasma membrane is a measure of the current need for sphingolipids, whereas its local distribution marks sites of high sphingolipid demand. The physiological role of Nce102 in the regulation of sphingolipid synthesis is demonstrated by mass spectrometry analysis showing reduced levels of hydroxylated complex sphingolipids in response to heat stress in the nce102Δ deletion mutant. We also demonstrate that Nce102 behaves analogously in the widespread human fungal pathogen Candida albicans, suggesting a conserved principle of local sphingolipid control across species. IMPORTANCE Microorganisms are challenged constantly by their rapidly changing environment. To survive, they have developed diverse mechanisms to quickly perceive stressful situations and adapt to them appropriately. The primary site of both stress sensing and adaptation is the plasma membrane. We identified the yeast protein Nce102 as a marker of local sphingolipid levels and fluidity in the plasma membrane. Nce102 is an important structural and functional component of the membrane compartment Can1 (MCC), a plasma membrane microdomain stabilized by a large cytosolic hemitubular protein scaffold, the eisosome. The MCC/eisosomes are widely conserved among fungi and unicellular algae. To determine if Nce102 carries out similar functions in other organisms, we analyzed the human fungal pathogen Candida albicans and found that Nce102 responds to sphingolipid levels also in this organism, which has potential applications for the development of novel therapeutic approaches. The presented study represents a valuable model for how organisms regulate plasma membrane sphingolipids.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Esfingolípidos , Candida albicans , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolípidos/análisis , Esfingolípidos/metabolismo
4.
J Biol Chem ; 298(1): 101462, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864056

RESUMEN

Barth syndrome (BTHS) is an inherited mitochondrial disorder characterized by a decrease in total cardiolipin and the accumulation of its precursor monolysocardiolipin due to the loss of the transacylase enzyme tafazzin. However, the molecular basis of BTHS pathology is still not well understood. Here we characterize the double mutant pgc1Δtaz1Δ of Saccharomyces cerevisiae deficient in phosphatidylglycerol-specific phospholipase C and tafazzin as a new yeast model of BTHS. Unlike the taz1Δ mutant used to date, this model accumulates phosphatidylglycerol, thus better approximating the human BTHS cells. We demonstrate that increased phosphatidylglycerol in this strain leads to more pronounced mitochondrial respiratory defects and an increased incidence of aberrant mitochondria compared to the single taz1Δ mutant. We also show that the mitochondria of the pgc1Δtaz1Δ mutant exhibit a reduced rate of respiration due to decreased cytochrome c oxidase and ATP synthase activities. Finally, we determined that the mood-stabilizing anticonvulsant valproic acid has a positive effect on both lipid composition and mitochondrial function in these yeast BTHS models. Overall, our results show that the pgc1Δtaz1Δ mutant better mimics the cellular phenotype of BTHS patients than taz1Δ cells, both in terms of lipid composition and the degree of disruption of mitochondrial structure and function. This favors the new model for use in future studies.


Asunto(s)
Síndrome de Barth , Cardiolipinas , Fosfatidilgliceroles , Aciltransferasas/metabolismo , Síndrome de Barth/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Humanos , Fenotipo , Fosfatidilgliceroles/antagonistas & inhibidores , Fosfatidilgliceroles/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
5.
Biomolecules ; 10(11)2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114062

RESUMEN

Membrane proteins are targeted not only to specific membranes in the cell architecture, but also to distinct lateral microdomains within individual membranes to properly execute their biological functions. Yeast tetraspan protein Nce102 has been shown to migrate between such microdomains within the plasma membrane in response to an acute drop in sphingolipid levels. Combining microscopy and biochemistry methods, we show that upon gradual ageing of a yeast culture, when sphingolipid demand increases, Nce102 migrates from the plasma membrane to the vacuole. Instead of being targeted for degradation it localizes to V-ATPase-poor, i.e., ergosterol-enriched, domains of the vacuolar membrane, analogous to its plasma membrane localization. We discovered that, together with its homologue Fhn1, Nce102 modulates vacuolar morphology, dynamics, and physiology. Specifically, the fusing of vacuoles, accompanying a switch of fermenting yeast culture to respiration, is retarded in the strain missing both proteins. Furthermore, the absence of either causes an enlargement of ergosterol-rich vacuolar membrane domains, while the vacuoles themselves become smaller. Our results clearly show decreased stability of the V-ATPase in the absence of either Nce102 or Fhn1, a possible result of the disruption of normal microdomain morphology of the vacuolar membrane. Therefore, the functionality of the vacuole as a whole might be compromised in these cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
6.
Biomolecules ; 9(8)2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31349700

RESUMEN

One of the best characterized fungal membrane microdomains is the MCC/eisosome. The MCC (membrane compartment of Can1) is an evolutionarily conserved ergosterol-rich plasma membrane domain. It is stabilized on its cytosolic face by the eisosome, a hemitubular protein complex composed of Bin/Amphiphysin/Rvs (BAR) domain-containing Pil1 and Lsp1. These two proteins bind directly to phosphatidylinositol 4,5-bisphosphate and promote the typical furrow-like shape of the microdomain, with highly curved edges and bottom. While some proteins display stable localization in the MCC/eisosome, others enter or leave it under particular conditions, such as misbalance in membrane lipid composition, changes in membrane tension, or availability of specific nutrients. These findings reveal that the MCC/eisosome, a plasma membrane microdomain with distinct morphology and lipid composition, acts as a multifaceted regulator of various cellular processes including metabolic pathways, cellular morphogenesis, signalling cascades, and mRNA decay. In this minireview, we focus on the MCC/eisosome's proposed role in the regulation of lipid metabolism. While the molecular mechanisms of the MCC/eisosome function are not completely understood, the idea of intracellular processes being regulated at the plasma membrane, the foremost barrier exposed to environmental challenges, is truly exciting.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Membrana Celular/metabolismo , Homeostasis , Metabolismo de los Lípidos , Dominios Proteicos
7.
FEMS Yeast Res ; 19(5)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31247640

RESUMEN

The biosynthesis of yeast phosphatidylglycerol (PG) takes place in the inner mitochondrial membrane. Outside mitochondria, the abundance of PG is low. Here, we present evidence that the subcellular distribution of PG is maintained by the locally controlled enzymatic activity of the PG-specific phospholipase, Pgc1. A fluorescently labeled Pgc1 protein accumulates on the surface of lipid droplets (LD). We show, however, that LD are not only dispensable for Pgc1-mediated PG degradation, but do not even host any phospholipase activity of Pgc1. Our in vitro assays document the capability of LD-accumulated Pgc1 to degrade PG upon entry to the membranes of the endoplasmic reticulum, mitochondria and even of artificial phospholipid vesicles. Fluorescence recovery after photobleaching analysis confirms the continuous exchange of GFP-Pgc1 within the individual LD in situ, suggesting that a steady-state equilibrium exists between LD and membranes to regulate the immediate phospholipase activity of Pgc1. In this model, LD serve as a storage place and shelter Pgc1, preventing its untimely degradation, while both phospholipase activity and degradation of the enzyme occur in the membranes.


Asunto(s)
Gotas Lipídicas/química , Fosfatidilgliceroles/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Fosfolipasas de Tipo C/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Neuroscience ; 394: 127-143, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30367945

RESUMEN

Transient receptor potential vanilloid type 4 (TRPV4) channels are involved in astrocyte volume regulation; however, only limited data exist about its mechanism in astrocytes in situ. We performed middle cerebral artery occlusion in adult mice, where we found twice larger edema 1 day after the insult in trpv4-/- mice compared to the controls, which was quantified using magnetic resonance imaging. This result suggests disrupted volume regulation in the brain cells in trpv4-/- mice leading to increased edema formation. The aim of our study was to elucidate whether TRPV4 channel-based volume regulation occurs in astrocytes in situ and whether the disrupted volume regulation in trpv4-/- mice might lead to higher edema formation after brain ischemia. For our experiments, we used trpv4-/- mice crossed with transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the glial fibrillary acidic protein promoter, which leads to astrocyte visualization by EGFP expression. For quantification of astrocyte volume changes, we used two-dimensional (2D) and three-dimensional (3D) morphometrical approaches and a quantification algorithm based on fluorescence intensity changes during volume alterations induced by hypotonicity or by oxygen-glucose deprivation. In contrast to in vitro experiments, we found little evidence of the contribution of TRPV4 channels to volume regulation in astrocytes in situ in adult mice. Moreover, we only found a rare expression of TRPV4 channels in adult mouse astrocytes. Our data suggest that TRPV4 channels are not involved in astrocyte volume regulation in situ; however, they play a protective role during the ischemia-induced brain edema formation.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Edema Encefálico/metabolismo , Edema Encefálico/patología , Canales Catiónicos TRPV/metabolismo , Animales , Edema Encefálico/etiología , Isquemia Encefálica/complicaciones , Femenino , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Canales Catiónicos TRPV/genética
9.
J Neurosci Methods ; 306: 38-44, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29885815

RESUMEN

BACKGROUND: Several techniques for cell volume measurement using fluorescence microscopy have been established to date. In this study, we compare the performance of three different approaches which allow for estimations of the cell volume changes in biological samples containing individual fluorescently labeled cells either in culture or in the tissue context. The specific requirements, limitations and advantages of individual approaches are discussed. NEW METHOD: Global morphometric data are quantitatively compared with local information about the overall cell volume, represented by the concentration of a mobile fluorophore accumulated within the monitored cell. RESULTS: Volume changes induced by variations in the extracellular osmolarity in murine fibroblasts and astrocytes either in the culture or in the acute brain slices were registered by the three- and two-dimensional morphometries and by local fluorescence intensity measurements. The performance of the latter approach was verified using FRAP assessment of the fluorophore mobility. Significantly lower amplitudes of the cortical astrocytes swelling were detected by three-dimensional morphometry, when compared to the other two approaches. Consequently, it failed to detect temperature-induced cell volume changes. COMPARISON WITH EXISTING METHOD(S): The three most popular methods of cell volume measurement are compared to each other in this study. CONCLUSIONS: We show that the effectivity of global morphometry-based volumetric approaches drops with the increasing cell shape complexity or in the tissue context. In contrast to this, the performance of local fluorescence intensity monitoring, which is also fully capable of reflecting the instant cell volume variations remains stable, independent of the system used and application.


Asunto(s)
Astrocitos/citología , Astrocitos/fisiología , Tamaño de la Célula , Fibroblastos/citología , Fibroblastos/fisiología , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Células 3T3 , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Colorantes Fluorescentes , Soluciones Hipertónicas , Soluciones Hipotónicas , Soluciones Isotónicas , Ratones , Microscopía Confocal/métodos
10.
Eur J Cell Biol ; 96(6): 591-599, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28501103

RESUMEN

We describe a novel mechanism of mRNA decay regulation, which takes place under the conditions of glucose deprivation in the yeast Saccharomyces cerevisiae. The regulation is based on temporally stable sequestration of the main 5'-3' mRNA exoribonuclease Xrn1 at the eisosome, a plasma membrane-associated protein complex organizing a specialized membrane microdomain. As documented by monitoring the decay of a specific mRNA substrate in time, Xrn1-mediated mRNA degradation ceases during the accumulation of Xrn1 at eisosome, but the eisosome-associated Xrn1 retains its functionality and can be re-activated when released to cytoplasm following the addition of glucose. In cells lacking the eisosome organizer Pil1, Xrn1 does not associate with the plasma membrane and its activity is preserved till the stationary phase. Thus, properly assembled eisosome is necessary for this kind of Xrn1 regulation, which occurs in a liquid culture as well as in a differentiated colony.


Asunto(s)
Citoplasma/metabolismo , Exorribonucleasas/genética , Fosfoproteínas/genética , Estabilidad del ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Citoplasma/genética , Exorribonucleasas/metabolismo , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Mol Biol Cell ; 27(10): 1663-75, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27009204

RESUMEN

The plasma membrane of the fungal pathogen Candida albicans forms a protective barrier that also mediates many processes needed for virulence, including cell wall synthesis, invasive hyphal morphogenesis, and nutrient uptake. Because compartmentalization of the plasma membrane is believed to coordinate these diverse activities, we examined plasma membrane microdomains termed eisosomes or membrane compartment of Can1 (MCC), which correspond to ∼200-nm-long furrows in the plasma membrane. A pil1∆ lsp1∆ mutant failed to form eisosomes and displayed strong defects in plasma membrane organization and morphogenesis, including extensive cell wall invaginations. Mutation of eisosome proteins Slm2, Pkh2, and Pkh3 did not cause similar cell wall defects, although pkh2∆ cells formed chains of furrows and pkh3∆ cells formed wider furrows, identifying novel roles for the Pkh protein kinases in regulating furrows. In contrast, the sur7∆ mutant formed cell wall invaginations similar to those for the pil1∆ lsp1∆ mutant even though it could form eisosomes and furrows. A PH-domain probe revealed that the regulatory lipid phosphatidylinositol 4,5-bisphosphate was enriched at sites of cell wall invaginations in both the sur7∆ and pil1∆ lsp1∆ cells, indicating that this contributes to the defects. The sur7∆ and pil1∆ lsp1∆ mutants displayed differential susceptibility to various types of stress, indicating that they affect overlapping but distinct functions. In support of this, many mutant phenotypes of the pil1∆ lsp1∆ cells were rescued by overexpressing SUR7 These results demonstrate that C. albicans eisosomes promote the ability of Sur7 to regulate plasma membrane organization.


Asunto(s)
Candida albicans/metabolismo , Membrana Celular/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Pared Celular/metabolismo , Endocitosis/fisiología , Proteínas Fúngicas/metabolismo , Hifa/metabolismo , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo
13.
Biochim Biophys Acta ; 1861(8 Pt B): 806-811, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26902513

RESUMEN

Lateral segregation of plasma membrane lipids is a generally accepted phenomenon. Lateral lipid microdomains of specific composition, structure and biological functions are established as a result of simultaneous action of several competing mechanisms which contribute to membrane organization. Various lines of evidence support the conclusion that among those mechanisms, the membrane potential plays significant and to some extent unique role. Above all, clear differences in the microdomain structure as revealed by fluorescence microscopy could be recognized between polarized and depolarized membranes. In addition, recent fluorescence spectroscopy experiments reported depolarization-induced changes in a membrane lipid order. In the context of earlier findings showing that plasma membranes of depolarized cells are less susceptible to detergents and the cells less sensitive to antibiotics or antimycotics treatment we discuss a model, in which membrane potential-driven re-organization of the microdomain structure contributes to maintaining membrane integrity during response to stress, pathogen attack and other challenges involving partial depolarization of the plasma membrane. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.


Asunto(s)
Membrana Celular/fisiología , Microdominios de Membrana/fisiología , Potenciales de la Membrana/fisiología , Animales , Membrana Celular/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo
14.
FASEB J ; 30(5): 1941-57, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26887443

RESUMEN

The relationship of the inner mitochondrial membrane (IMM) cristae structure and intracristal space (ICS) to oxidative phosphorylation (oxphos) is not well understood. Mitofilin (subunit Mic60) of the mitochondrial contact site and cristae organizing system (MICOS) IMM complex is attached to the outer membrane (OMM) via the sorting and assembly machinery/topogenesis of mitochondrial outer membrane ß-barrel proteins (SAM/TOB) complex and controls the shape of the cristae. ATP synthase dimers determine sharp cristae edges, whereas trimeric OPA1 tightens ICS outlets. Metabolism is altered during hypoxia, and we therefore studied cristae morphology in HepG2 cells adapted to 5% oxygen for 72 h. Three dimensional (3D), super-resolution biplane fluorescence photoactivation localization microscopy with Eos-conjugated, ICS-located lactamase-ß indicated hypoxic ICS expansion with an unchanged OMM (visualized by Eos-mitochondrial fission protein-1). 3D direct stochastic optical reconstruction microscopy immunocytochemistry revealed foci of clustered mitofilin (but not MICOS subunit Mic19) in contrast to its even normoxic distribution. Mitofilin mRNA and protein decreased by ∼20%. ATP synthase dimers vs monomers and state-3/state-4 respiration ratios were lower during hypoxia. Electron microscopy confirmed ICS expansion (maximum in glycolytic cells), which was absent in reduced or OMM-detached cristae of OPA1- and mitofilin-silenced cells, respectively. Hypoxic adaptation is reported as rounding sharp cristae edges and expanding cristae width (ICS) by partial mitofilin/Mic60 down-regulation. Mitofilin-depleted MICOS detaches from SAM while remaining MICOS with mitofilin redistributes toward higher interdistances. This phenomenon causes partial oxphos dormancy in glycolytic cells via disruption of ATP synthase dimers.-Plecitá-Hlavatá, L., Engstová, H., Alán, L., Spacek, T., Dlasková, A., Smolková, K., Spacková, J., Tauber, J., Strádalová, V., Malínský, J., Lessard, M., Bewersdorf, J., Jezek, P. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Adaptación Fisiológica/fisiología , Adenosina Trifosfato/biosíntesis , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Oxígeno , Regulación hacia Abajo , Regulación de la Expresión Génica/fisiología , Células Hep G2 , Humanos , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/genética , Complejos Multiproteicos/fisiología , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína
15.
Biochim Biophys Acta ; 1857(1): 34-45, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26482708

RESUMEN

In yeast, phosphatidylglycerol (PG) is a minor phospholipid under standard conditions; it can be utilized for cardiolipin (CL) biosynthesis by CL synthase, Crd1p, or alternatively degraded by the phospholipase Pgc1p. The Saccharomyces cerevisiae deletion mutants crd1Δ and pgc1Δ both accumulate PG. Based on analyses of the phospholipid content of pgc1Δ and crd1Δ yeast, we revealed that in yeast mitochondria, two separate pools of PG are present, which differ in their fatty acid composition and accessibility for Pgc1p-catalyzed degradation. In contrast to CL-deficient crd1Δ yeast, the pgc1Δ mutant contains normal levels of CL. This makes the pgc1Δ strain a suitable model to study the effect of accumulation of PG per se. Using fluorescence microscopy, we show that accumulation of PG with normal levels of CL resulted in increased fragmentation of mitochondria, while in the absence of CL, accumulation of PG led to the formation of large mitochondrial sheets. We also show that pgc1Δ mitochondria exhibited increased respiration rates due to increased activity of cytochrome c oxidase. Taken together, our results indicate that not only a lack of anionic phospholipids, but also excess PG, or unbalanced ratios of anionic phospholipids in mitochondrial membranes, have harmful consequences on mitochondrial morphology and function.


Asunto(s)
Mitocondrias/metabolismo , Fosfatidilgliceroles/metabolismo , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/biosíntesis , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/ultraestructura , Fosfolipasas/fisiología
16.
J Cell Sci ; 129(1): 95-107, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26585312

RESUMEN

Plasma membrane proteins synthesised at the endoplasmic reticulum are delivered to the cell surface via sorting pathways. Hydrophobic mismatch theory based on the length of the transmembrane domain (TMD) dominates discussion about determinants required for protein sorting to the plasma membrane. Transmembrane adaptor proteins (TRAP) are involved in signalling events which take place at the plasma membrane. Members of this protein family have TMDs of varying length. We were interested in whether palmitoylation or other motifs contribute to the effective sorting of TRAP proteins. We found that palmitoylation is essential for some, but not all, TRAP proteins independent of their TMD length. We also provide evidence that palmitoylation and proximal sequences can modulate sorting of artificial proteins with TMDs of suboptimal length. Our observations point to a unique character of each TMD defined by its primary amino acid sequence and its impact on membrane protein localisation. We conclude that, in addition to the TMD length, secondary sorting determinants such as palmitoylation or flanking sequences have evolved for the localisation of membrane proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Lipoilación , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Membrana Celular/metabolismo , Espacio Extracelular/química , Glicosilación , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Estructura Terciaria de Proteína , Transporte de Proteínas , Relación Estructura-Actividad
17.
PLoS One ; 10(3): e0122770, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25811606

RESUMEN

Regulation of gene expression on the level of translation and mRNA turnover is widely conserved evolutionarily. We have found that the main mRNA decay enzyme, exoribonuclease Xrn1, accumulates at the plasma membrane-associated eisosomes after glucose exhaustion in a culture of the yeast S. cerevisiae. Eisosomal localization of Xrn1 is not achieved in cells lacking the main component of eisosomes, Pil1, or Sur7, the protein accumulating at the membrane compartment of Can1 (MCC) - the eisosome-organized plasma membrane microdomain. In contrast to the conditions of diauxic shift, when Xrn1 accumulates in processing bodies (P-bodies), or acute heat stress, in which these cytosolic accumulations of Xrn1 associate with eIF3a/Rpg1-containing stress granules, Xrn1 is not accompanied by other mRNA-decay machinery components when it accumulates at eisosomes in post-diauxic cells. It is important that Xrn1 is released from eisosomes after addition of fermentable substrate. We suggest that this spatial segregation of Xrn1 from the rest of the mRNA-decay machinery reflects a general regulatory mechanism, in which the key enzyme is kept separate from the rest of mRNA decay factors in resting cells but ready for immediate use when fermentable nutrients emerge and appropriate metabolism reprogramming is required. In particular, the localization of Xrn1 to the eisosome, together with previously published data, accents the relevance of this plasma membrane-associated compartment as a multipotent regulatory site.


Asunto(s)
Membrana Celular/metabolismo , Exorribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/genética , Exorribonucleasas/genética , Expresión Génica , Genes Reporteros , Glucosa/metabolismo , Respuesta al Choque Térmico , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
FEBS J ; 282(3): 419-34, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25410771

RESUMEN

We report the transmembrane voltage-induced lateral reorganization of highly-ordered lipid microdomains in the plasma membrane of living Saccharomyces cerevisiae. Using trans-parinaric acid (all-trans-9,11,13,15-octadecatetraenoic acid) as a probe of lipid order and different methods of membrane depolarization, we found that depolarization always invokes a significant reduction in the amount of gel-like microdomains in the membrane. Different depolarization mechanisms, including the application of ionophores, cell depolarization by an external electric field, depolarization by proton/hexose co-transport facilitated by HUP1 protein and a reduction of membrane potential caused by compromised respiration efficiency, yielded the same results independently of the yeast strain used. The data suggest that the voltage-induced reorganization of lateral membrane structure could play significant role in fast cellular response to acute stress conditions, as well as in other membrane microdomain-related regulatory mechanisms.


Asunto(s)
Membrana Celular/metabolismo , Microdominios de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Potenciales de la Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Eur J Cell Biol ; 94(1): 1-11, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25457676

RESUMEN

Eisosomes are plasma membrane-associated protein complexes organizing the membrane compartment of Can1 (MCC), a membrane microdomain of specific structure and function in ascomycetous fungi. By heterologous expression of specific components of Schizosaccharomyces pombe eisosomes in Saccharomyces cerevisiae we reconstitute structures exhibiting the composition and morphology of S. pombe eisosome in the host plasma membrane. We show S. pombe protein Pil1 (SpPil1) to substitute the function of its S. cerevisiae homologue in building plasma membrane-associated assemblies recognized by inherent MCC/eisosome constituents Sur7 and Seg1. Our data indicate that binding of SpPil1 to the plasma membrane of S. cerevisiae also induces formation of furrow-like invaginations characteristic for MCC. To the best of our knowledge, this is the first report of interspecies transfer of a functional plasma membrane microdomain. In the described system, we identify a striking difference between eisosome stabilizer proteins Seg1 and SpSle1. While Seg1 recruits both Pil1 and SpPil1 to the plasma membrane, SpSle1 recognizes only its natural counterpart, SpPil1. In the presence of Pil1, SpSle1 is segregated outside the Pil1-organized eisosomes and forms independent microdomains in the host membrane.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Microdominios de Membrana/metabolismo , Fosfoproteínas/metabolismo
20.
FEBS Lett ; 588(3): 443-9, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24333335

RESUMEN

We report sphingolipid-related reorganization of gel-like microdomains in the plasma membrane of living Saccharomyces cerevisiae using trans-Parinaric acid (t-PnA) and 1,6-diphenyl-1,3,5-hexatriene (DPH). Compared to control, the gel-like domains were significantly reduced in the membrane of a sphingolipid-deficient lcb1-100 mutant. The same reduction resulted from sphingolipid depletion by myriocin. The phenotype could be reverted when a myriocin-induced block in sphingolipid biosynthesis was bypassed by exogenous dihydrosphingosine. Lipid order of less-ordered membrane regions decreased with sphingolipid depletion as well, as documented by DPH fluorescence anisotropy. The data indicate that organization of lateral microdomains is an essential physiological role of these structural lipids.


Asunto(s)
Membrana Celular/metabolismo , Microdominios de Membrana/metabolismo , Esfingolípidos/biosíntesis , Membrana Celular/química , Difenilhexatrieno/química , Ácidos Grasos Insaturados/química , Polarización de Fluorescencia , Microdominios de Membrana/química , Mutación , Saccharomyces cerevisiae , Espectrometría de Fluorescencia , Esfingolípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA